Computer Science

Transforming software with generative AI

Where exactly are we on this transformative journey? How are enterprises navigating this new terrain—and what’s still ahead? To investigate how generative AI is impacting the SDLC, MIT Technology Review Insights surveyed more than 300 business leaders about how they’re using the technology in their software and product lifecycles.

The findings reveal that generative AI has rich potential to revolutionize software development, but that many enterprises are still in the early stages of realizing its full impact. While adoption is widespread and accelerating, there are significant untapped opportunities. This report explores the projected course of these advancements, as well as how emerging innovations, including agentic AI, might bring about some of the technology’s loftier promises.

Key findings include the following:

Substantial gains from generative AI in the SDLC still lie ahead. Only 12% of surveyed business leaders say that the technology has “fundamentally” changed how they develop software today. Future gains, however, are widely anticipated: Thirty-eight percent of respondents believe generative AI will “substantially” change the SDLC across most organizations in one to three years, and another 31% say this will happen in four to 10 years.

Use of generative AI in the SDLC is nearly universal, but adoption is not comprehensive. A full 94% of respondents say they’re using generative AI for software development in some capacity. One-fifth (20%) describe generative AI as an “established, well-integrated part” of their SDLC, and one-third (33%) report it’s “widely used” in at least part of their SDLC. Nearly one-third (29%), however, are still “conducting small pilots” or adopting the technology on an individual-employee basis (rather than via a team-wide integration).

Generative AI is not just for code generation. Writing software may be the most obvious use case, but most respondents (82%) report using generative AI in at least two phases of the SDLC, and one-quarter (26%) say they are using it across four or more. The most common additional use cases include designing and prototyping new features, streamlining requirement development, fast-tracking testing, improving bug detection, and
boosting overall code quality.

Generative AI is already meeting or exceeding expectations in the SDLC. Even with this room to grow in how fully they integrate generative AI into their software development workflows, 46% of survey respondents say generative AI is already meeting expectations, and 33% say it “exceeds” or “greatly exceeds” expectations.

AI agents represent the next frontier. Looking to the future, almost half (49%) of leaders believe advanced AI tools, such as assistants and agents, will lead to efficiency gains or cost savings. Another 20% believe such tools will lead to improved throughput or faster time to market.

Download the full report.

This content was produced by Insights, the custom content arm of MIT Technology Review. It was not written by MIT Technology Review’s editorial staff.

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button