JAVA

The Performance of Various To-Many Nesting Algorithms – Java, SQL and jOOQ.

It’s been a while since jOOQ 3.15 has been released with its revolutionary standard SQL MULTISET emulation feature. A thing that has been long overdue and which I promised on twitter a few times is to run a few benchmarks comparing the performance of various approaches to nesting to-many relationships with jOOQ.

This article will show, that in some real world scenarios on modest data set sizes, jOOQ’s MULTISET emulation performs about as well as

  • manually running single join queries and manually deduplicating results
  • manually running multiple queries per nest level and matching results in the client

In contrast, all of the above perform much better than the dreaded N+1 “approach” (or rather, accident), all the while being much more readable and maintainable.

The conclusion is:

  • For jOOQ users to freely use MULTISET whenever smallish data sets are used (i.e. a nested loop join would be OK, too)
  • For jOOQ users to use MULTISET carefully where large-ish data sets are used (i.e. a hash join or merge join would be better, e.g. in reports)
  • For ORM vendors to prefer the multiple queries per nest level approach in case they’re in full control of their SQL to materialise predefined object graphs

Benchmark idea

As always, we’re querying the famous Sakila database. There are two types of queries that I’ve tested in this benchmark.

A query that double-nests child collections (DN = DoubleNesting)

The result will be of the form:

record DNCategory (String name) {}
record DNFilm (long id, String title, List<DNCategory> categories) {}
record DNName (String firstName, String lastName) {}
record DNActor (long id, DNName name, List<DNFilm> films) {}

So, the result will be actors and their films and their categories per film. If a single join is being executed, this should cause a lot of duplication in the data (although regrettably, in our test data set, each film only has a single category)

A query that nests two child collections in a single parent (MCC = Multiple Child Collections)

The result will be of the form:

record MCCName (String firstName, String lastName) {}
record MCCActor (long id, MCCName name) {}
record MCCCategory (String name) {}
record MCCFilm (
    long id, 
    String title, 
    List<MCCActor> actors, 
    List<MCCCategory> categories
) {}

So, the result will be films and their actors as well as their categories. This is hard to deduplicate with a single join, because of the cartesian product between ACTOR × CATEGORY. But other approaches with multiple queries still work, as well as MULTISET, of course, which will be the most convenient option

Data set size

In addition to the above distinction of use-cases, the benchmark will also try to pull in either:

  • The entire data set (we have 1000 FILM entries as well as 200 ACTOR entries, so not a huge data set), where hash joins tend to be better
  • Only the subset for either ACTOR_ID = 1 or FILM_ID = 1, respectively, where nested loop joins tend to be better

The expectation here is that a JOIN tends to perform better on larger result sets, because the RDBMS will prefer a hash join algorithm. It’s unlikely the MULTISET emulation can be transformed into a hash join or merge join, given that it uses JSON_ARRAYAGG which might be difficult to transform into something different, which is still equivalent.

Benchmark tests

The following things will be benchmarked for each combination of the above matrix:

  1. A single MULTISET query with its 3 available emulations using XML (where available), JSON, JSONB
  2. A single JOIN query that creates a cartesian product between parent and children
  3. An approach that runs 2 queries fetching all the necessary data into client memory, and performs the nesting in the client, thereafter
  4. A naive N+1 “client side nested loop join,” which is terrible but not unlikely to happen in real world client code, either with jOOQ (less likely, but still possible), or with a lazy loading ORM (more likely, because “accidental”)

The full benchmark logic will be posted at the end of this article.

1. Single MULTISET query (DN)

The query looks like this:

return state.ctx.select(
    ACTOR.ACTOR_ID,

    // Nested record for the actor name
    row(
        ACTOR.FIRST_NAME,
        ACTOR.LAST_NAME
    ).mapping(DNName::new),

    // First level nested collection for films per actor
    multiset(
        select(
            FILM_ACTOR.FILM_ID,
            FILM_ACTOR.film().TITLE,

            // Second level nested collection for categories per film
            multiset(
                select(FILM_CATEGORY.category().NAME)
                .from(FILM_CATEGORY)
                .where(FILM_CATEGORY.FILM_ID.eq(FILM_ACTOR.FILM_ID))
            ).convertFrom(r -> r.map(mapping(DNCategory::new)))
        )
        .from(FILM_ACTOR)
        .where(FILM_ACTOR.ACTOR_ID.eq(ACTOR.ACTOR_ID))
    ).convertFrom(r -> r.map(mapping(DNFilm::new))))
.from(ACTOR)

// Either fetch all data or filter ACTOR_ID = 1
.where(state.filter ? ACTOR.ACTOR_ID.eq(1L) : noCondition())
.fetch(mapping(DNActor::new));

To learn more about the specific MULTISET syntax and the ad-hoc conversion feature, please refer to earlier blog posts explaining the details. The same is true for the implicit JOIN feature, which I’ll be using in this post to keep SQL a bit more terse.

2. Single JOIN query (DN)

We can do everything with a single join as well. In this example, I’m using a functional style to transform the flat result into the doubly nested collection in a type safe way. It’s a bit quirky, perhaps there are better ways to do this with non-JDK APIs. Since I wouldn’t expect this to be performance relevant, I think it’s good enough:

// The query is straightforward. Just join everything from
// ACTOR -> FILM -> CATEGORY via the relationship tables
return state.ctx.select(
    FILM_ACTOR.ACTOR_ID,
    FILM_ACTOR.actor().FIRST_NAME,
    FILM_ACTOR.actor().LAST_NAME,
    FILM_ACTOR.FILM_ID,
    FILM_ACTOR.film().TITLE,
    FILM_CATEGORY.category().NAME)
.from(FILM_ACTOR)
.join(FILM_CATEGORY).on(FILM_ACTOR.FILM_ID.eq(FILM_CATEGORY.FILM_ID))
.where(state.filter ? FILM_ACTOR.ACTOR_ID.eq(1L) : noCondition())

// Now comes the tricky part. We first use JDK Collectors to group
// results by ACTOR
.collect(groupingBy(
    r -> new DNActor(
        r.value1(), 
        new DNName(r.value2(), r.value3()), 

        // dummy FILM list, we can't easily collect them here, yet
        null 
    ),

    // For each actor, produce a list of FILM, again with a dummy
    // CATEGORY list as we can't collect them here yet
    groupingBy(r -> new DNFilm(r.value4(), r.value5(), null))
))

// Set<Entry<DNActor, Map<DNFilm, List<Record6<...>>>>> 
.entrySet()
.stream()

// Re-map the DNActor record into itself, but this time, add the
// nested DNFilm list.
.map(a -> new DNActor(
    a.getKey().id(),
    a.getKey().name(),
    a.getValue()
     .entrySet()
     .stream()
     .map(f -> new DNFilm(
         f.getKey().id(),
         f.getKey().title(),
         f.getValue().stream().map(
             c -> new DNCategory(c.value6())
         ).toList()
     ))
     .toList()
))
.toList();

Possibly, this example could be improved to avoid the dummy collection placeholders in the first collect() call, although that would probably require additional record types or structural tuple types like those from jOOλ. I kept it “simple” for this example, though I’ll take your suggestions in the comments.

3. Two queries merged in memory (DN)

A perfectly fine solution is to run multiple queries (but not N+1 queries!), i.e. one query per level of nesting. This isn’t always possible, or optimal, but in this case, there’s a reasonable solution.

I’m spelling out the lengthy Record5<...> types to show the exact types in this blog post. You can use var to profit from type inference, of course. All of these queries use Record.value5() and similar accessors to profit from index based access, just to be fair, preventing the field lookup, which isn’t necessary in the benchmark.

// Straightforward query to get ACTORs and their FILMs
Result<Record5<Long, String, String, Long, String>> actorAndFilms =
state.ctx
    .select(
        FILM_ACTOR.ACTOR_ID,
        FILM_ACTOR.actor().FIRST_NAME,
        FILM_ACTOR.actor().LAST_NAME,
        FILM_ACTOR.FILM_ID,
        FILM_ACTOR.film().TITLE)
    .from(FILM_ACTOR)
    .where(state.filter ? FILM_ACTOR.ACTOR_ID.eq(1L) : noCondition())
    .fetch();

// Create a FILM.FILM_ID => CATEGORY.NAME lookup
// This is just fetching all the films and their categories.
// Optionally, filter for the previous FILM_ID list
Map<Long, List<DNCategory>> categoriesPerFilm = state.ctx
    .select(
        FILM_CATEGORY.FILM_ID,
        FILM_CATEGORY.category().NAME)
    .from(FILM_CATEGORY)
    .where(state.filter
        ? FILM_CATEGORY.FILM_ID.in(actorAndFilms.map(r -> r.value4()))
        : noCondition())
    .collect(intoGroups(
        r -> r.value1(),
        r -> new DNCategory(r.value2())
    ));

// Group again by ACTOR and FILM, using the previous dummy
// collection trick
return actorAndFilms
    .collect(groupingBy(
        r -> new DNActor(
            r.value1(), 
            new DNName(r.value2(), r.value3()), 
            null
        ),
        groupingBy(r -> new DNFilm(r.value4(), r.value5(), null))
    ))
    .entrySet()
    .stream()

    // Then replace the dummy collections
    .map(a -> new DNActor(
        a.getKey().id(),
        a.getKey().name(),
        a.getValue()
         .entrySet()
         .stream()
         .map(f -> new DNFilm(
             f.getKey().id(),
             f.getKey().title(),

             // And use the CATEGORY per FILM lookup
             categoriesPerFilm.get(f.getKey().id())
         ))
         .toList()
    ))
    .toList();

Whew. Unwieldy. Certainly, the MULTISET approach is to be preferred from a readability perspective? All this mapping to intermediary structural data types can be heavy, especially if you make a typo and the compiler trips.

4. N+1 queries (DN)

This naive solution is hopefully not what you’re doing mostly in production, but we’ve all done it at some point (yes, guilty!), so here it is. At least, the logic is more readable than the previous ones, it’s as straightforward as the original MULTISET example, in fact, because it does almost the same thing as the MULTISET example, but instead of doing everything in SQL, it correlates the subqueries in the client:

// Fetch all ACTORs
return state.ctx
    .select(ACTOR.ACTOR_ID, ACTOR.FIRST_NAME, ACTOR.LAST_NAME)
    .from(ACTOR)
    .where(state.filter ? ACTOR.ACTOR_ID.eq(1L) : noCondition())
    .fetch(a -> new DNActor(
        a.value1(),
        new DNName(a.value2(), a.value3()),

        // And for each ACTOR, fetch all FILMs
        state.ctx
            .select(FILM_ACTOR.FILM_ID, FILM_ACTOR.film().TITLE)
            .from(FILM_ACTOR)
            .where(FILM_ACTOR.ACTOR_ID.eq(a.value1()))
            .fetch(f -> new DNFilm(
                f.value1(),
                f.value2(),

                // And for each FILM, fetch all CATEGORY-s
                state.ctx
                    .select(FILM_CATEGORY.category().NAME)
                    .from(FILM_CATEGORY)
                    .where(FILM_CATEGORY.FILM_ID.eq(f.value1()))
                    .fetch(r -> new DNCategory(r.value1()))
            ))
    ));

1. Single MULTISET query (MCC)

Now, we’ll repeat the exercise again to collect data into a more tree like data structure, where the parent type has multiple child collections, something that is much more difficult to do with JOIN queries. Piece of cake with MULTISET, which nests the collections directly in SQL:

return state.ctx
    .select(
        FILM.FILM_ID,
        FILM.TITLE,

        // Get all ACTORs for each FILM
        multiset(
            select(
                FILM_ACTOR.ACTOR_ID,
                row(
                    FILM_ACTOR.actor().FIRST_NAME,
                    FILM_ACTOR.actor().LAST_NAME
                ).mapping(MCCName::new)
            )
            .from(FILM_ACTOR)
            .where(FILM_ACTOR.FILM_ID.eq(FILM.FILM_ID))
        ).convertFrom(r -> r.map(mapping(MCCActor::new))),

        // Get all CATEGORY-s for each FILM
        multiset(
            select(FILM_CATEGORY.category().NAME)
            .from(FILM_CATEGORY)
            .where(FILM_CATEGORY.FILM_ID.eq(FILM.FILM_ID))
        ).convertFrom(r -> r.map(mapping(MCCCategory::new))))
    .from(FILM)
    .where(state.filter ? FILM.FILM_ID.eq(1L) : noCondition())
    .fetch(mapping(MCCFilm::new));

Again, to learn more about the specific MULTISET syntax and the ad-hoc conversion feature, please refer to earlier blog posts explaining the details. The same is true for the implicit JOIN feature, which I’ll be using in this post to keep SQL a bit more terse.

2. Single JOIN Query (MCC)

This type of nesting is very hard to do with a single JOIN query, because there will be a cartesian product between ACTOR and CATEGORY, which may be hard to deduplicate after the fact. In this case, it would be possible, because we know that each ACTOR is listed only once per FILM, and so is each CATEGORY. But what if this wasn’t the case? It might not be possible to correctly remove duplicates, because we wouldn’t be able to distinguish:

  • Duplicates originating from the JOIN cartesian product
  • Duplicates originating from the underlying data set

As it is hard (probably not impossible) to guarantee correctness, it is futile to test performance here.

3. Two queries merged in memory (MCC)

This is again quite a reasonable implementation of this kind of nesting using ordinary JOIN queries.

It’s probably what most ORMs do that do not yet support MULTISET like collection nesting. It’s perfectly reasonable to use this approach when the ORM is in full control of the generated queries (e.g. when fetching pre-defined object graphs). But when allowing custom queries, this approach won’t work well for complex queries. For example, JPQL’s JOIN FETCH syntax may use this approach behind the scenes, but this prevents JPQL from supporting non-trivial queries where JOIN FETCH is used in derived tables or correlated subqueries, and itself joins derived tables, etc. Correct me if I’m wrong, but I think that seems to be incredibly hard to get right, to transform complex nested queries into multiple individual queries that are executed one after the other, only to then reassemble results.

In any case, it’s an approach that works well for ORMs who are in control of their SQL, but is laborious for end users to implement manually.

// Straightforward query to get ACTORs and their FILMs
Result<Record5<Long, String, Long, String, String>> filmsAndActors = 
state.ctx
    .select(
        FILM_ACTOR.FILM_ID,
        FILM_ACTOR.film().TITLE,
        FILM_ACTOR.ACTOR_ID,
        FILM_ACTOR.actor().FIRST_NAME,
        FILM_ACTOR.actor().LAST_NAME)
    .from(FILM_ACTOR)
    .where(state.filter ? FILM_ACTOR.FILM_ID.eq(1L) : noCondition())
    .fetch();

// Create a FILM.FILM_ID => CATEGORY.NAME lookup
// This is just fetching all the films and their categories.
Map<Long, List<MCCCategory>> categoriesPerFilm = state.ctx
    .select(
        FILM_CATEGORY.FILM_ID,
        FILM_CATEGORY.category().NAME)
    .from(FILM_CATEGORY)
    .where(FILM_CATEGORY.FILM_ID.in(
        filmsAndActors.map(r -> r.value1())
    ))
    .and(state.filter ? FILM_CATEGORY.FILM_ID.eq(1L) : noCondition())
    .collect(intoGroups(
        r -> r.value1(),
        r -> new MCCCategory(r.value2())
    ));

// Group again by ACTOR and FILM, using the previous dummy
// collection trick
return filmsAndActors
    .collect(groupingBy(
        r -> new MCCFilm(r.value1(), r.value2(), null, null),
        groupingBy(r -> new MCCActor(
            r.value3(), 
            new MCCName(r.value4(), r.value5())
        ))
    ))
    .entrySet()
    .stream()

    // This time, the nesting of CATEGORY-s is simpler because
    // we don't have to nest them again deeply
    .map(f -> new MCCFilm(
        f.getKey().id(),
        f.getKey().title(),
        new ArrayList<>(f.getValue().keySet()),
        categoriesPerFilm.get(f.getKey().id())
    ))
    .toList();

As you cam see, it still feels like a chore to do all of this grouping and nesting manually, making sure all the intermediate structural types are correct, but at least the MCC case is a bit simpler than the previous DN case because the nesting is less deep.

But we all know, we’ll eventually combine the approaches and nest tree structures of arbitrary complexity.

4. N+1 queries (MCC)

Again, don’t do this at home (or in production), but we’ve all been there and here’s what a lot of applications do either explicitly (shame on the author!), or implicitly (shame on the ORM for allowing the author to put shame on the author!)

// Fetch all FILMs
return state.ctx
    .select(FILM.FILM_ID, FILM.TITLE)
    .from(FILM)
    .where(state.filter ? FILM.FILM_ID.eq(1L) : noCondition())
    .fetch(f -> new MCCFilm(
        f.value1(),
        f.value2(),

        // For each FILM, fetch all ACTORs
        state.ctx
            .select(
                FILM_ACTOR.ACTOR_ID,
                FILM_ACTOR.actor().FIRST_NAME,
                FILM_ACTOR.actor().LAST_NAME)
            .from(FILM_ACTOR)
            .where(FILM_ACTOR.FILM_ID.eq(f.value1()))
            .fetch(a -> new MCCActor(
                a.value1(),
                new MCCName(a.value2(), a.value3())
            )),

        // For each FILM, fetch also all CATEGORY-s
        state.ctx
            .select(FILM_CATEGORY.category().NAME)
            .from(FILM_CATEGORY)
            .where(FILM_CATEGORY.FILM_ID.eq(f.value1()))
            .fetch(c -> new MCCCategory(c.value1()))
    ));

Algorithmic complexities

Before we move on to the benchmark results, please be very careful with your interpretation, as always.

The goal of this benchmark wasn’t to find a clear winner (or put shame on a clear loser). The goal of this benchmark was to check if the MULTISET approach has any significant and obvious benefit and/or drawback over the other, more manual and unwieldy approaches.

Don’t conclude that if something is 1.5x or 3x faster than something else, that it is better. It may be in this case, but it may not be in different cases, e.g.

  • When the data set is smaller
  • When the data set is bigger
  • When the data set is distributed differently (e.g. many more categories per film, or a less regular number of films per actor (sakila data sets were generated rather uniformly))
  • When switching vendors
  • When switching versions
  • When you have more load on the system
  • When your queries are more diverse (benchmarks tend to run only single queries, which greatly profit from caching in the database server!)

So, again, as with every benchmark result, be very careful with your interpretation.

The N+1 case

Even the N+1 case, which can turn into something terrible isn’t always the wrong choice.

As we know from Big O Notation, problems with bad algorithmic complexities appear only when N is big, not when it is small.

  • The algorithmic complexity of a single nested collection is O(N * log M), i.e. N times looking up values in an index for M values (assuming there’s an index)
  • The algorithmic complexity of a doubly nested collection, however, is much worse, it’s O(N * log M * ? * log L), i.e. N times looking up values in an index for M values, and then ? times (depends on the distribution) looking up values in an index for L values.

Better hope all of these values are very small. If they are, you’re fine. If they aren’t, you’ll notice in production on a weekend.

The MULTISET case

While I keep advocating MULTISET as the holy grail because it’s so powerful, convenient, type safe, and reasonably performant, as we’ll see next, it isn’t the holy grail like everything else we ever hoped for promising holy-graily-ness.

While it might be theoretically possible to implement some hash join style nested collection algorithm in the MULTISET case, I suspect that the emulations, which currently use XMLAGG, JSON_ARRAYAGG or similar constructs, won’t be optimised this way, and as such, we’ll get correlated subqueries, which is essentially N+1, but 100% on the server side.

As more and more people use SQL/JSON features, these might be optimised further in the future, though. I wouldn’t hold my breath for RDBMS vendors investing time to improve SQL/XML too much (regrettably).

We can verify the execution plan by running an EXPLAIN (on PostgreSQL) on the query generated by jOOQ for the doubly nested collection case:

explain select
  actor.actor_id,
  row (actor.first_name, actor.last_name),
  (
    select coalesce(
      json_agg(json_build_array(v0, v1, v2)),
      json_build_array()
    )
    from (
      select
        film_actor.film_id as v0,
        alias_75379701.title as v1,
        (
          select coalesce(
            json_agg(json_build_array(v0)),
            json_build_array()
          )
          from (
            select alias_130639425.name as v0
            from (
              film_category
                join category as alias_130639425
                  on film_category.category_id = 
                    alias_130639425.category_id
              )
            where film_category.film_id = film_actor.film_id
          ) as t
        ) as v2
      from (
        film_actor
          join film as alias_75379701
            on film_actor.film_id = alias_75379701.film_id
        )
      where film_actor.actor_id = actor.actor_id
    ) as t
  )
from actor
where actor.actor_id = 1

The result is:

QUERY PLAN                                                                                                                   
-----------------------------------------------------------------------------------------------------------------------------
Seq Scan on actor  (cost=0.00..335.91 rows=1 width=72)                                                                       
  Filter: (actor_id = 1)                                                                                                     
  SubPlan 2                                                                                                                  
    ->  Aggregate  (cost=331.40..331.41 rows=1 width=32)                                                                     
          ->  Hash Join  (cost=5.09..73.73 rows=27 width=23)                                                                 
                Hash Cond: (alias_75379701.film_id = film_actor.film_id)                                                     
                ->  Seq Scan on film alias_75379701  (cost=0.00..66.00 rows=1000 width=23)                                   
                ->  Hash  (cost=4.75..4.75 rows=27 width=8)                                                                  
                      ->  Index Only Scan using film_actor_pkey on film_actor  (cost=0.28..4.75 rows=27 width=8)             
                            Index Cond: (actor_id = actor.actor_id)                                                          
          SubPlan 1                                                                                                          
            ->  Aggregate  (cost=9.53..9.54 rows=1 width=32)                                                                 
                  ->  Hash Join  (cost=8.30..9.52 rows=1 width=7)                                                            
                        Hash Cond: (alias_130639425.category_id = film_category.category_id)                                 
                        ->  Seq Scan on category alias_130639425  (cost=0.00..1.16 rows=16 width=15)                         
                        ->  Hash  (cost=8.29..8.29 rows=1 width=8)                                                           
                              ->  Index Only Scan using film_category_pkey on film_category  (cost=0.28..8.29 rows=1 width=8)
                                    Index Cond: (film_id = film_actor.film_id)                                               

As expected, two nested scalar subqueries. Don’t get side-tracked by the hash joins inside of the subqueries. Those are expected, because we’re joining between e.g. FILM and FILM_ACTOR, or between CATEGORY and FILM_CATEGORY in the subquery. But this doesn’t affect how the two subqueries are correlated to the outer-most query, where we cannot use any hash joins.

So, we have an N+1 situation, just without the latency of running a server roundtrip every time! The algorithmic complexity is the same, but the constant overhead per item has been removed, allowing for bigger N before it hurts – still the approach will fail eventually, just like having too many JOIN on large data sets is inefficient in RDBMS that do not support hash join or merge join, but only nested loop join (e.g. older MySQL versions).

Future versions of jOOQ may support MULTISET more natively on Oracle and PostgreSQL. It’s already supported natively in Informix, which has standard SQL MULTISET support. In PostgreSQL, things could be done using ARRAY(<subquery>) and ARRAY_AGG(), which might be more transparent to the optimiser than JSON_AGG. If it is, I’ll definitely follow up with another blog post.

The single JOIN query case

I would expect this approach to work OK-ish, if the nested collections aren’t too big (i.e. there isn’t too much duplicate data). Once the nested collections grow bigger, the deduplication will bear quite some costs as:

  • More redundant data has to be produced on the server side (requiring more memory and CPU)
  • More redundant data has to be transferred over the wire
  • More deduplication needs to be done on the client side (requiring more memory and CPU)

All in all, this approach seems silly for complex nesting, but doable for a single nested collection. This benchmark doesn’t test huge deduplications.

The 1-query-per-nest-level case

I would expect the very unwieldy 1-query-per-nest-level case to be the most performant as N scales. It’s also relatively straightforward for an ORM to implement, in case the ORM is in full control of the generated SQL and doesn’t have to respect any user query requirements. It won’t work well if mixed into user query syntax, and it’s hard to do for users manually every time.

However, it’s an “after-the-fact” collection nesting approach, meaning that it only works well if some assumptions about the original query can be maintained. E.g. JOIN FETCH in JPQL only takes you this far. It may have been an OK workaround to nesting collections and making the concept available for simple cases, but I’m positive JPA / JPQL will evolve and also adopt MULTISET based approaches. After all, MULTISET has been a SQL standard for ORDBMS for ages now.

The long-term solution for nesting collections can only be to nest them directly in SQL, and make all the logic available to the optimiser for its various decisions.

Benchmark results

Finally, some results! I’ve run the benchmark on these 4 RDBMS:

  • MySQL
  • Oracle
  • PostgreSQL
  • SQL Server

I didn’t run it on Db2, which can’t correlate derived tables yet, an essential feature for correlated MULTISET subqueries in jOOQ in 3.15 – 3.17’s MULTISET emulation (see https://github.com/jOOQ/jOOQ/issues/12045 for details).

As always, since benchmark results cannot be published for commercial RDBMS, I’m not publishing actual times, only relative times, where the slowest execution is 1, and faster executions are multiples of 1. Imagine some actual unit of measurement, like operations/second, only it’s not per second but per undisclosed unit of time. That way, the RDBMS can only be compared with themselves, not with each other.

MySQL:

Benchmark                                                        (filter)   Mode  Cnt     Score     Error   Units
MultisetVsJoinBenchmark.doubleNestingJoin                            true  thrpt    7   4413.48 ±  448.63   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSON                    true  thrpt    7   2524.96 ±  402.38   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSONB                   true  thrpt    7   2738.62 ±  332.37   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingNPlusOneQueries                 true  thrpt    7    265.37 ±   42.98   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingTwoQueries                      true  thrpt    7   2256.38 ±  363.18   ops/time-unit
                                                                                                            
MultisetVsJoinBenchmark.doubleNestingJoin                           false  thrpt    7    266.27 ±   13.31   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSON                   false  thrpt    7     54.98 ±    2.25   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSONB                  false  thrpt    7     54.05 ±    1.58   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingNPlusOneQueries                false  thrpt    7      1.00 ±    0.11   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingTwoQueries                     false  thrpt    7    306.23 ±   11.64   ops/time-unit
                                                                                                            
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSON         true  thrpt    7   3058.68 ±  722.24   ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSONB        true  thrpt    7   3179.18 ±  333.77   ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsNPlusOneQueries      true  thrpt    7   1845.75 ±  167.26   ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsTwoQueries           true  thrpt    7   2425.76 ±  579.73   ops/time-unit
                                                                                                            
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSON        false  thrpt    7     91.78 ±    2.65   ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSONB       false  thrpt    7     92.48 ±    2.25   ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsNPlusOneQueries     false  thrpt    7      2.84 ±    0.48   ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsTwoQueries          false  thrpt    7    171.66 ±    19.8   ops/time-unit

Oracle:

Benchmark                                                        (filter)   Mode  Cnt     Score     Error   Units
MultisetVsJoinBenchmark.doubleNestingJoin                            true  thrpt    7    669.54 ±   28.35   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSON                    true  thrpt    7    419.13 ±   23.60   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSONB                   true  thrpt    7    432.40 ±   17.76   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetXML                     true  thrpt    7    351.42 ±   18.70   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingNPlusOneQueries                 true  thrpt    7    251.73 ±   30.19   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingTwoQueries                      true  thrpt    7    548.80 ±  117.40   ops/time-unit
                                                                                                            
MultisetVsJoinBenchmark.doubleNestingJoin                           false  thrpt    7     15.59 ±    1.86   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSON                   false  thrpt    7      2.41 ±    0.07   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSONB                  false  thrpt    7      2.40 ±    0.07   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetXML                    false  thrpt    7      1.91 ±    0.06   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingNPlusOneQueries                false  thrpt    7      1.00 ±    0.12   ops/time-unit
MultisetVsJoinBenchmark.doubleNestingTwoQueries                     false  thrpt    7     13.63 ±    1.57   ops/time-unit
                                                                                                            
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSON         true  thrpt    7   1217.79 ±   89.87   ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSONB        true  thrpt    7   1214.07 ±   76.10   ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetXML          true  thrpt    7    702.11 ±   87.37   ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsNPlusOneQueries      true  thrpt    7    919.47 ±  340.63   ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsTwoQueries           true  thrpt    7   1194.05 ±  179.92   ops/time-unit
                                                                                                            
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSON        false  thrpt    7      2.89 ±    0.08   ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSONB       false  thrpt    7      3.00 ±    0.05   ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetXML         false  thrpt    7      1.04 ±    0.17   ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsNPlusOneQueries     false  thrpt    7      1.52 ±    0.08   ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsTwoQueries          false  thrpt    7     13.00 ±    1.96   ops/time-unit

PostgreSQL:

Benchmark                                                        (filter)   Mode  Cnt     Score     Error   Units
MultisetVsJoinBenchmark.doubleNestingJoin                            true   thrpt   7     4128.21 ± 398.82  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSON                    true   thrpt   7     3187.88 ± 409.30  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSONB                   true   thrpt   7     3064.69 ± 154.75  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetXML                     true   thrpt   7     1973.44 ± 166.22  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingNPlusOneQueries                 true   thrpt   7      267.15 ±  34.01  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingTwoQueries                      true   thrpt   7     2081.03 ± 317.95  ops/time-unit
                                                                                                            
MultisetVsJoinBenchmark.doubleNestingJoin                           false   thrpt   7      275.95 ±   6.80  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSON                   false   thrpt   7       53.94 ±   1.06  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSONB                  false   thrpt   7       45.00 ±   0.52  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetXML                    false   thrpt   7       25.11 ±   1.01  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingNPlusOneQueries                false   thrpt   7        1.00 ±   0.07  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingTwoQueries                     false   thrpt   7      306.11 ±  35.40  ops/time-unit
                                                                                                            
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSON         true   thrpt   7     4710.47 ± 194.37  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSONB        true   thrpt   7     4391.78 ± 223.62  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetXML          true   thrpt   7     2740.73 ± 186.70  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsNPlusOneQueries      true   thrpt   7     1792.94 ± 134.50  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsTwoQueries           true   thrpt   7     2821.82 ± 252.34  ops/time-unit
                                                                                                            
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSON        false   thrpt   7       68.45 ±   2.58  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSONB       false   thrpt   7       58.59 ±   0.58  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetXML         false   thrpt   7       15.58 ±   0.35  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsNPlusOneQueries     false   thrpt   7        2.71 ±   0.16  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsTwoQueries          false   thrpt   7      163.03 ±   7.54  ops/time-unit

SQL Server:

Benchmark                                                        (filter)   Mode  Cnt    Score     Error  Units
MultisetVsJoinBenchmark.doubleNestingJoin                            true  thrpt    7  4081.85 ± 1029.84  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSON                    true  thrpt    7  1243.17 ±   84.24  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSONB                   true  thrpt    7  1254.13 ±   56.94  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetXML                     true  thrpt    7  1077.23 ±   61.50  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingNPlusOneQueries                 true  thrpt    7   264.45 ±   16.12  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingTwoQueries                      true  thrpt    7  1608.92 ±  145.75  ops/time-unit
                                                                                             
MultisetVsJoinBenchmark.doubleNestingJoin                           false  thrpt    7   359.08 ±   20.88  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSON                   false  thrpt    7     8.41 ±    0.06  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetJSONB                  false  thrpt    7     8.32 ±    0.15  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingMultisetXML                    false  thrpt    7     7.24 ±    0.08  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingNPlusOneQueries                false  thrpt    7     1.00 ±    0.09  ops/time-unit
MultisetVsJoinBenchmark.doubleNestingTwoQueries                     false  thrpt    7   376.02 ±    7.60  ops/time-unit
                                                                                                  
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSON         true  thrpt    7  1735.23 ±  178.30  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSONB        true  thrpt    7  1736.01 ±   92.26  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetXML          true  thrpt    7  1339.68 ±  137.47  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsNPlusOneQueries      true  thrpt    7  1264.50 ±  343.56  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsTwoQueries           true  thrpt    7  1057.54 ±  130.13  ops/time-unit
                                                                                                  
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSON        false  thrpt    7     7.90 ±    0.05  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetJSONB       false  thrpt    7     7.85 ±    0.15  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsMultisetXML         false  thrpt    7     5.06 ±    0.18  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsNPlusOneQueries     false  thrpt    7     1.77 ±    0.28  ops/time-unit
MultisetVsJoinBenchmark.multipleChildCollectionsTwoQueries          false  thrpt    7   255.08 ±   19.22  ops/time-unit

Benchmark conclusion

As can be seen in most RDBMS:

  • All RDBMS produced similar results.
  • The added latency of N+1 almost always contributed a significant performance penalty. An exception is where we have a filter = true and multiple child collections, in case of which the parent N is 1 (duh) and only a single nest level is implemented.
  • MULTISET performed even better than the single query JOIN based approach or the 1-query-per-nest-level approach when filter = true and with multiple child collections, probably because of the more compact data format.
  • The XML based MULTISET emulation is always the slowest among the emulations, likely because it requires more formatting. (In one Oracle case, the XML based MULTISET emulation was even slower than the ordinary N+1 approach).
  • JSONB is a bit slower in PostgreSQL than JSON, likely because JSON is a purely text based format, without any post processing / cleanup. JSONB‘s advantage is not with projection-only queries, but with storage, comparison, and other operations. For most usages, JSONB is probably better. For projection only, JSON is better (jOOQ 3.17 will make this the default for the MULTISET emulation)
  • It’s worth noting that jOOQ serialises records as JSON arrays, not JSON objects, in order to avoid transferring repetitive column names, and offer positional index when deserialising the array.
  • For large-ish data sets (where filter = false), the N+1 factor of a MULTISET correlated subquery can become a problem (due to the nature of algorithmic complexity), as it prevents using more efficient hash joins. In these cases, the single query JOIN based approach or 1-query-per-nest-level approach are better

In short:

  • MULTISET can be used whenever a nested loop join is optimal.
  • If a hash join or merge join would be more optimal, then the single query JOIN approach or the 1-query-per-nest-level approach tend to perform better (though they have their own caveats as complexity grows)

The benefit in convenience and correctness is definitely worth it for small data sets. For larger data sets, continue using JOIN. As always, there’s no silver bullet.

Things this blog post did not investigate

A few things weren’t investigated by this blog post, including:

  • The serialisation overhead in the server. Ordinary JDBC ResultSet tend to profit from a binary network protocol between server and client. With JSON or XML, that benefit of protocol compactness goes away, and a systematic overhead is produced. To what extent this plays a role has not been investigated.
  • The same is true on the client side, where nested JSON or XML documents need to be deserialised. While the following VisualVM screenshot shows that there is some overhead, it is not significant compared to the execution time. Also, it isn’t a significant amount more overhead than what jOOQ already produces when mapping between ResultSet and jOOQ data structures. I mean, obviously, using JDBC directly can be faster if you’re doing it right, but then you remove all the convenience jOOQ creates.
Comparing time it takes to deserialise result (4.7%) vs execute query (92%)

Benchmark code

Finally, should you wish to reproduce this benchmark, or adapt it to your own needs, here’s the code.

I’ve used JMH for the benchmark. While this is obviously not a “micro benchmark,” I like JMH’s approach to benchmarking, including:

  • Easy configuration
  • Warmup penalty is removed by doing warmup iterations
  • Statistics are collected to handle outlier effects

Obviously, all the version use jOOQ for query building, execution, mapping, to achieve fair and meaningful results. It would be possible to use JDBC directly in the non-MULTISET approaches, but that wouldn’t be a fair comparison of concepts.

The benchmark assumes availability of a SAKILA database instance, as well as generated code, similar to this jOOQ demo.

package org.jooq.test.benchmarks.local;

import static java.util.stream.Collectors.groupingBy;
import static org.jooq.Records.intoGroups;
import static org.jooq.Records.mapping;
import static org.jooq.example.db.postgres.Tables.*;
import static org.jooq.impl.DSL.multiset;
import static org.jooq.impl.DSL.noCondition;
import static org.jooq.impl.DSL.row;
import static org.jooq.impl.DSL.select;

import java.io.InputStream;
import java.sql.Connection;
import java.sql.DriverManager;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import java.util.Properties;
import java.util.function.Consumer;

import org.jooq.DSLContext;
import org.jooq.Record5;
import org.jooq.Result;
import org.jooq.conf.NestedCollectionEmulation;
import org.jooq.conf.Settings;
import org.jooq.impl.DSL;

import org.openjdk.jmh.annotations.Benchmark;
import org.openjdk.jmh.annotations.Fork;
import org.openjdk.jmh.annotations.Level;
import org.openjdk.jmh.annotations.Measurement;
import org.openjdk.jmh.annotations.Param;
import org.openjdk.jmh.annotations.Scope;
import org.openjdk.jmh.annotations.Setup;
import org.openjdk.jmh.annotations.State;
import org.openjdk.jmh.annotations.TearDown;
import org.openjdk.jmh.annotations.Warmup;

@Fork(value = 1)
@Warmup(iterations = 3, time = 3)
@Measurement(iterations = 7, time = 3)
public class MultisetVsJoinBenchmark {

    @State(Scope.Benchmark)
    public static class BenchmarkState {

        Connection connection;
        DSLContext ctx;

        @Param({ "true", "false" })
        boolean    filter;

        @Setup(Level.Trial)
        public void setup() throws Exception {
            try (InputStream is = BenchmarkState.class.getResourceAsStream("/config.mysql.properties")) {
                Properties p = new Properties();
                p.load(is);
                Class.forName(p.getProperty("db.mysql.driver"));
                connection = DriverManager.getConnection(
                    p.getProperty("db.mysql.url"),
                    p.getProperty("db.mysql.username"),
                    p.getProperty("db.mysql.password")
                );
            }

            ctx = DSL.using(connection, new Settings()
                .withExecuteLogging(false)
                .withRenderSchema(false));
        }

        @TearDown(Level.Trial)
        public void teardown() throws Exception {
            connection.close();
        }
    }

    record DNName(String firstName, String lastName) {}
    record DNCategory(String name) {}
    record DNFilm(long id, String title, List<DNCategory> categories) {}
    record DNActor(long id, DNName name, List<DNFilm> films) {}

    @Benchmark
    public List<DNActor> doubleNestingMultisetXML(BenchmarkState state) {
        state.ctx.settings().setEmulateMultiset(NestedCollectionEmulation.XML);
        return doubleNestingMultiset0(state);
    }

    @Benchmark
    public List<DNActor> doubleNestingMultisetJSON(BenchmarkState state) {
        state.ctx.settings().setEmulateMultiset(NestedCollectionEmulation.JSON);
        return doubleNestingMultiset0(state);
    }

    @Benchmark
    public List<DNActor> doubleNestingMultisetJSONB(BenchmarkState state) {
        state.ctx.settings().setEmulateMultiset(NestedCollectionEmulation.JSONB);
        return doubleNestingMultiset0(state);
    }

    private List<DNActor> doubleNestingMultiset0(BenchmarkState state) {
        return state.ctx
            .select(
                ACTOR.ACTOR_ID,
                row(
                    ACTOR.FIRST_NAME,
                    ACTOR.LAST_NAME
                ).mapping(DNName::new),
                multiset(
                    select(
                        FILM_ACTOR.FILM_ID,
                        FILM_ACTOR.film().TITLE,
                        multiset(
                            select(FILM_CATEGORY.category().NAME)
                            .from(FILM_CATEGORY)
                            .where(FILM_CATEGORY.FILM_ID.eq(FILM_ACTOR.FILM_ID))
                        ).convertFrom(r -> r.map(mapping(DNCategory::new)))
                    )
                    .from(FILM_ACTOR)
                    .where(FILM_ACTOR.ACTOR_ID.eq(ACTOR.ACTOR_ID))
                ).convertFrom(r -> r.map(mapping(DNFilm::new))))
            .from(ACTOR)
            .where(state.filter ? ACTOR.ACTOR_ID.eq(1L) : noCondition())
            .fetch(mapping(DNActor::new));
    }

    @Benchmark
    public List<DNActor> doubleNestingJoin(BenchmarkState state) {
        return state.ctx
            .select(
                FILM_ACTOR.ACTOR_ID,
                FILM_ACTOR.actor().FIRST_NAME,
                FILM_ACTOR.actor().LAST_NAME,
                FILM_ACTOR.FILM_ID,
                FILM_ACTOR.film().TITLE,
                FILM_CATEGORY.category().NAME)
            .from(FILM_ACTOR)
            .join(FILM_CATEGORY).on(FILM_ACTOR.FILM_ID.eq(FILM_CATEGORY.FILM_ID))
            .where(state.filter ? FILM_ACTOR.ACTOR_ID.eq(1L) : noCondition())
            .collect(groupingBy(
                r -> new DNActor(r.value1(), new DNName(r.value2(), r.value3()), null),
                groupingBy(r -> new DNFilm(r.value4(), r.value5(), null))
            ))
            .entrySet()
            .stream()
            .map(a -> new DNActor(
                a.getKey().id(),
                a.getKey().name(),
                a.getValue()
                 .entrySet()
                 .stream()
                 .map(f -> new DNFilm(
                     f.getKey().id(),
                     f.getKey().title(),
                     f.getValue().stream().map(c -> new DNCategory(c.value6())).toList()
                 ))
                 .toList()
            ))
            .toList();
    }

    @Benchmark
    public List<DNActor> doubleNestingTwoQueries(BenchmarkState state) {
        Result<Record5<Long, String, String, Long, String>> actorAndFilms = state.ctx
            .select(
                FILM_ACTOR.ACTOR_ID,
                FILM_ACTOR.actor().FIRST_NAME,
                FILM_ACTOR.actor().LAST_NAME,
                FILM_ACTOR.FILM_ID,
                FILM_ACTOR.film().TITLE)
            .from(FILM_ACTOR)
            .where(state.filter ? FILM_ACTOR.ACTOR_ID.eq(1L) : noCondition())
            .fetch();

        Map<Long, List<DNCategory>> categoriesPerFilm = state.ctx
            .select(
                FILM_CATEGORY.FILM_ID,
                FILM_CATEGORY.category().NAME)
            .from(FILM_CATEGORY)
            .where(state.filter
                ? FILM_CATEGORY.FILM_ID.in(actorAndFilms.map(r -> r.value4()))
                : noCondition())
            .collect(intoGroups(
                r -> r.value1(),
                r -> new DNCategory(r.value2())
            ));

        return actorAndFilms
            .collect(groupingBy(
                r -> new DNActor(r.value1(), new DNName(r.value2(), r.value3()), null),
                groupingBy(r -> new DNFilm(r.value4(), r.value5(), null))
            ))
            .entrySet()
            .stream()
            .map(a -> new DNActor(
                a.getKey().id(),
                a.getKey().name(),
                a.getValue()
                 .entrySet()
                 .stream()
                 .map(f -> new DNFilm(
                     f.getKey().id(),
                     f.getKey().title(),
                     categoriesPerFilm.get(f.getKey().id())
                 ))
                 .toList()
            ))
            .toList();
    }

    @Benchmark
    public List<DNActor> doubleNestingNPlusOneQueries(BenchmarkState state) {
        return state.ctx
            .select(ACTOR.ACTOR_ID, ACTOR.FIRST_NAME, ACTOR.LAST_NAME)
            .from(ACTOR)
            .where(state.filter ? ACTOR.ACTOR_ID.eq(1L) : noCondition())
            .fetch(a -> new DNActor(
                a.value1(),
                new DNName(a.value2(), a.value3()),
                state.ctx
                    .select(FILM_ACTOR.FILM_ID, FILM_ACTOR.film().TITLE)
                    .from(FILM_ACTOR)
                    .where(FILM_ACTOR.ACTOR_ID.eq(a.value1()))
                    .fetch(f -> new DNFilm(
                        f.value1(),
                        f.value2(),
                        state.ctx
                            .select(FILM_CATEGORY.category().NAME)
                            .from(FILM_CATEGORY)
                            .where(FILM_CATEGORY.FILM_ID.eq(f.value1()))
                            .fetch(r -> new DNCategory(r.value1()))
                    ))
            ));
    }

    record MCCName(String firstName, String lastName) {}
    record MCCCategory(String name) {}
    record MCCActor(long id, MCCName name) {}
    record MCCFilm(long id, String title, List<MCCActor> actors, List<MCCCategory> categories) {}

    @Benchmark
    public List<MCCFilm> multipleChildCollectionsMultisetXML(BenchmarkState state) {
        state.ctx.settings().setEmulateMultiset(NestedCollectionEmulation.XML);
        return multipleChildCollectionsMultiset0(state);
    }

    @Benchmark
    public List<MCCFilm> multipleChildCollectionsMultisetJSON(BenchmarkState state) {
        state.ctx.settings().setEmulateMultiset(NestedCollectionEmulation.JSON);
        return multipleChildCollectionsMultiset0(state);
    }

    @Benchmark
    public List<MCCFilm> multipleChildCollectionsMultisetJSONB(BenchmarkState state) {
        state.ctx.settings().setEmulateMultiset(NestedCollectionEmulation.JSONB);
        return multipleChildCollectionsMultiset0(state);
    }

    private List<MCCFilm> multipleChildCollectionsMultiset0(BenchmarkState state) {
        return state.ctx
            .select(
                FILM.FILM_ID,
                FILM.TITLE,
                multiset(
                    select(
                        FILM_ACTOR.ACTOR_ID,
                        row(
                            FILM_ACTOR.actor().FIRST_NAME,
                            FILM_ACTOR.actor().LAST_NAME
                        ).mapping(MCCName::new)
                    )
                    .from(FILM_ACTOR)
                    .where(FILM_ACTOR.FILM_ID.eq(FILM.FILM_ID))
                ).convertFrom(r -> r.map(mapping(MCCActor::new))),
                multiset(
                    select(
                        FILM_CATEGORY.category().NAME
                    )
                    .from(FILM_CATEGORY)
                    .where(FILM_CATEGORY.FILM_ID.eq(FILM.FILM_ID))
                ).convertFrom(r -> r.map(mapping(MCCCategory::new))))
            .from(FILM)
            .where(state.filter ? FILM.FILM_ID.eq(1L) : noCondition())
            .fetch(mapping(MCCFilm::new));
    }

    @Benchmark
    public List<MCCFilm> multipleChildCollectionsTwoQueries(BenchmarkState state) {
        Result<Record5<Long, String, Long, String, String>> filmsAndActors = state.ctx
            .select(
                FILM_ACTOR.FILM_ID,
                FILM_ACTOR.film().TITLE,
                FILM_ACTOR.ACTOR_ID,
                FILM_ACTOR.actor().FIRST_NAME,
                FILM_ACTOR.actor().LAST_NAME)
            .from(FILM_ACTOR)
            .where(state.filter ? FILM_ACTOR.FILM_ID.eq(1L) : noCondition())
            .fetch();

        Map<Long, List<MCCCategory>> categoriesPerFilm = state.ctx
            .select(
                FILM_CATEGORY.FILM_ID,
                FILM_CATEGORY.category().NAME)
            .from(FILM_CATEGORY)
            .where(FILM_CATEGORY.FILM_ID.in(
                filmsAndActors.map(r -> r.value1())
            ))
            .and(state.filter ? FILM_CATEGORY.FILM_ID.eq(1L) : noCondition())
            .collect(intoGroups(
                r -> r.value1(),
                r -> new MCCCategory(r.value2())
            ));

        return filmsAndActors
            .collect(groupingBy(
                r -> new MCCFilm(r.value1(), r.value2(), null, null),
                groupingBy(r -> new MCCActor(r.value3(), new MCCName(r.value4(), r.value5())))
            ))
            .entrySet()
            .stream()
            .map(f -> new MCCFilm(
                f.getKey().id(),
                f.getKey().title(),
                new ArrayList<>(f.getValue().keySet()),
                categoriesPerFilm.get(f.getKey().id())
            ))
            .toList();
    }

    @Benchmark
    public List<MCCFilm> multipleChildCollectionsNPlusOneQueries(BenchmarkState state) {
        return state.ctx
            .select(FILM.FILM_ID, FILM.TITLE)
            .from(FILM)
            .where(state.filter ? FILM.FILM_ID.eq(1L) : noCondition())
            .fetch(f -> new MCCFilm(
                f.value1(),
                f.value2(),
                state.ctx
                    .select(
                        FILM_ACTOR.ACTOR_ID,
                        FILM_ACTOR.actor().FIRST_NAME,
                        FILM_ACTOR.actor().LAST_NAME)
                    .from(FILM_ACTOR)
                    .where(FILM_ACTOR.FILM_ID.eq(f.value1()))
                    .fetch(a -> new MCCActor(
                        a.value1(),
                        new MCCName(a.value2(), a.value3())
                    )),
                state.ctx
                    .select(FILM_CATEGORY.category().NAME)
                    .from(FILM_CATEGORY)
                    .where(FILM_CATEGORY.FILM_ID.eq(f.value1()))
                    .fetch(c -> new MCCCategory(c.value1()))
            ));
    }
}

Related Articles

Leave a Reply

Your email address will not be published. Required fields are marked *

Back to top button